

Résistance du Botrytis de la vigne (Botrytis cinerea) vis-à-vis des fongicides

PLAN DE SURVEILLANCE 2013

Résumé:

En 2013, le suivi de la résistance aux fongicides de *Botrytis cinerea*, agent de la pourriture grise de la vigne, a été réalisé dans 8 régions : Alsace, Aquitaine, Champagne-Ardenne, Centre, Midi-Pyrénées, Poitou-Charentes, Pays de la Loire et Rhône-Alpes, avec un total de 92 parcelles analysées dont 91 avec des résultats exploitables. Ce plan de surveillance permet de suivre l'évolution de la présence de la maladie et de la fréquence des souches résistantes aux différentes familles chimiques. Ce suivi est effectué grâce à la mise en place de tests biologiques.

Les résultats 2013 montrent que presque toutes les familles chimiques sont concernées par la résistance, à l'exception des phénylpyrroles (fludioxonil) et des pyridinamines (fluazinam). La fréquence des parcelles présentant des souches résistantes est globalement stable, sauf pour 3 familles chimiques: celles des anilinopyrimidines (cyprodinil, mepanipyrim et pyriméthanil), des hydroxyanilides (fenhexamid) et des SDHI (boscalid et fluopyram) pour lesquelles l'année 2013 enregistre une assez forte progression.

En ce qui concerne le taux de souches résistantes dans les parcelles concernées par la résistance, il est plutôt stable à l'exception du phénotype AniR1 (résistance aux anilinopyrimidines) qui est en hausse constante depuis 2008.

La résistance multiple (phénotypes MDR) reste d'actualité avec une augmentation du nombre de parcelles concernées en 2013, mais les facteurs de résistance de ces souches restent faibles à moyens, il n'est pas observé, à ce jour, de baisse d'efficacité au vignoble.

Mots clés : Botrytis cinerea, plan de surveillance 2013, résistances, vigne

1- Présentation - contexte

Le plan de surveillance 2013 de la résistance de la pourriture grise vise l'ensemble des familles chimiques utilisées contre la pourriture grise de la vigne (tableau 1). Chez *Botrytis cinerea*, 2 types de résistance peuvent être observées : une résistance spécifique (résistance à une seule famille chimique par mutation spécifique du gène codant pour la cible du fongicide) qui concerne 5 groupes chimiques, et une multi résistance (résultant d'une excrétion cellulaire accrue de fongicides appartenant à plusieurs familles chimiques) qui concerne les 7 groupes chimiques. Les plans de surveillance de la résistance chez *Botrytis cinerea* (débutés au début des années 1990) montrent que le second phénomène, qualifié de MDR (Multi Drug Resistance), est en progression depuis la fin des années 1990. Au moins 3 phénotypes différents de MDR (MDR1, MDR2 et MDR3) sont distingués. Toutefois, comme les facteurs de résistance des souches de type MDR sont faibles, les baisses d'efficacité de la protection chimique semblent limitées au vignoble (Leroux, Walker, 2009). Ceci n'est pas le cas de la résistance spécifique, qui peut entraîner des baisses d'efficacité au terrain, en fonction de la fréquence des souches résistantes dans les populations.

<u>Tableau 1</u>: <u>Familles chimiques utilisées contre la pourriture grise de la vigne</u>

Groupes ou familles	Substances actives	Résistance	Résistance
chimiques		spécifique	multiple (MDR)
Anilino-pyrimidines (ANP)	pyriméthanil,	oui	oui
	mépanipyrim, cyprodinil		
Benzimidazoles	thiophanate-méthyl	oui	oui
SDHI (carboxamides)	boscalid	oui	oui
Dicarboximides	iprodione	oui	oui
Hydroxyanilides	fenhexamid	oui	oui
Phénylpyrroles	fludioxonil	non	oui
Pyridinamines	fluazinam	non	oui

2- Description brève de la méthode utilisée

Il s'agit d'une méthode d'analyse basée sur des tests biologiques (Leroux et al. 1984).

Les tests de laboratoire sont réalisés sur conidies de *Botrytis cinerea*. Les fongicides testés sont utilisés sous forme de produits techniques, dissous dans l'éthanol; ils sont incorporés dans un milieu gélosé à des doses discriminantes de fongicides afin de rechercher la fréquence des différents phénotypes suivants:

- ImiR1 : souches résistantes aux dicarboximides (iprodione)
- <u>BenR1</u>: souches résistantes aux **benzimidazoles** (méthyl-thiophanate) et sensibles aux phénylcarbamates (diéthofencarbe)
- BenR2 : souches résistantes aux benzimidazoles et aux phénylcarbamates (diéthofencarbe)
- <u>AniR1</u>: souches moyennement à hautement résistantes aux **anilinopyrimidines** (pyriméthanil, mépanipyrim, cyprodinil)
- <u>MDR1</u>: souches résistant faiblement, et simultanément, aux anilinopyrimidines, aux phénylpyrroles et dans une moindre mesure aux dicarboximides, aux pyridinamines et aux carboxamides
- MDR2: souches résistant faiblement, et simultanément, aux anilinopyrimidines, aux dicarboximides, aux hydroxyanilides, aux carboxamides et aux IDM*

- <u>MDR3</u>: souches combinant les résistances de type **MDR1 et MDR2** (souches résistant faiblement, et simultanément, aux **anilinopyrimidines**, aux **dicarboximides**, aux **hydroxyanilides**, aux **carboxamides**, aux **IDM***, aux **phénylpyrroles** et aux **pyridinamines**).
- PheR1 : souches résistantes aux phénylpyrroles (fludioxonil)
- HydR3: souches résistantes aux hydroxyanilides (fenhexamid)
- PyrR : souches résistantes aux pyridinamines (fluazinam)
- CarR: souches résistantes aux SDHI (carboxamides, pyridinyles, éthyl-benzamides)

Un milieu témoin (amendé avec la solution éthanolique seule) accompagne chaque test. Ces milieux sont ensuite coulés en boite de Petri de diamètre 55 mm. La suspension de spores (d'environ 100 000 à 150 000 spores/mL), réalisée dans l'eau stérile à partir des cotons-tiges contenant la sporulation de botrytis, est alors déposée à la surface des milieux gélosés et amendés, à raison de 250 μ L par boite. Les boites sont ensuite mises en incubation de 24 à 48 heures à 20°C et à l'obscurité.

Notation:

Après incubation, les pourcentages de germination ainsi que la proportion de conidies présentant des filaments d'une longueur supérieure ou égale à 50% de celles des conidies témoin sont évalués sous microscope. Seuls sont validés les résultats des échantillons présentant un pourcentage de germination dans les témoins d'au moins 50%.

A partir de ces résultats, sont déterminés pour chaque région viticole et pour chaque phénotype :

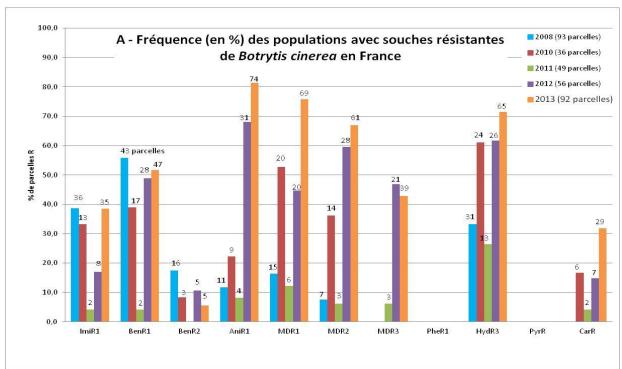
- le pourcentage moyen d'échantillons résistants, soit la fréquence de populations présentant au moins une souche résistante (un échantillon est considéré comme représentatif d'une parcelle),
- le pourcentage moyen (ou fréquence) de souches résistantes dans les parcelles concernées.

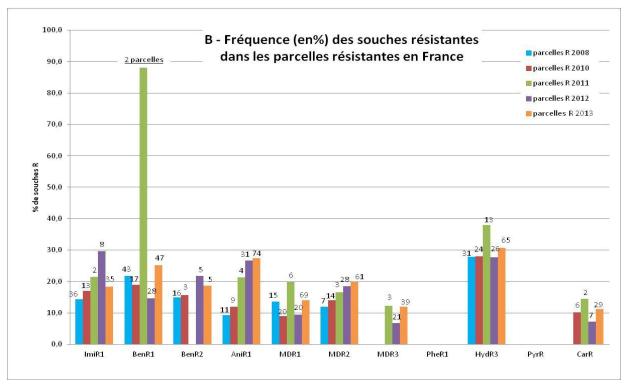
3- Prélèvements des échantillons

Les prélèvements de conidies sont réalisés le plus près possible de la récolte à l'aide de cotons-tiges sur baies sporulantes à raison de 30 baies (issues de 30 ceps différents) par parcelle à l'aide de 6 coton-tiges, soit 5 baies par coton-tige.

<u>Tableau 2</u>: <u>Nombre d'échantillons analysés par région en 2013</u>

Régions	Echantillons programmés	Echantillons reçus et analysés	Echantillons avec résultats exploitables
Alsace	10	10	10
Aquitaine	10	11	10
Bourgogne	15	0	0
Centre	15	10	10
Champagne	25	30	29
Midi-Pyrénées	5	5	5
Pays de la Loire	21	6	6
Poitou-Charentes (tests réalisés pour partie par la Fredon PC et complétés par l'Anses Lyon)	10	12	11
Rhône-Alpes	5	10	10
total	116	94	91


^{*} les substances actives concernées par ce mode d'action ne sont pas autorisées sur l'usage pourriture grise en France.



4- Résultats

Les histogrammes ci-dessous présentent l'évolution de la résistance vis-à-vis de différentes familles chimiques dans les différentes populations de *Botrytis cinerea* testées de 2008 à 2013 (l'année 2009 n'est pas représentée en raison d'une trop faible attaque du parasite au cours de cette année là).

Figure 1 : Synthèse 2008-2013 en : A - fréquence des parcelles présentant de la résistance et B - fréquence des souches résistantes dans les parcelles concernées. (Avec en légende, au dessus des histogrammes, le nombre de parcelles)

5- Discussion

- La fréquence de parcelles présentant une résistance à la famille des **dicarboximides** (**ImiR1**) a diminué de façon progressive jusqu'en 2012 (16% des parcelles avec résistance) et retrouve en 2013 son niveau de 2008 avec 38% des parcelles concernées (soit 35 parcelles sur 92 testées). En ce qui concerne la fréquence des souches résistantes, elle reste globalement stable et ne dépasse pas les 20% dans les parcelles concernées.
- Malgré l'interdiction du carbendazime depuis 2006 et l'utilisation très limitée des **benzimidazoles**, la résistance reste encore présente avec une fréquence de parcelles concernées par le phénotype **BenR1** de 52% en 2013 et en moyenne 25% de souches résistantes dans ces parcelles (en légère hausse par rapport à 2012). En ce qui concerne le phénotype **BenR2**, les résultats restent globalement stables : 5% des parcelles sont concernées en 2013 avec 18% de souches résistantes en moyenne sur ces parcelles.
- Le pourcentage de parcelles présentant une résistance aux **anilinopyrimidines** (**AniR1**) progresse dans toutes les régions et dépasse souvent les 80% (81% en moyenne des parcelles concernées par la résistance en 2013 contre 68% en 2012 et 12% en 2008). La fréquence des souches résistantes dans les parcelles concernées progresse aussi régulièrement, passant de 10% en 2008 à pratiquement 30% en 2012 et 2013.
- La résistance au **fenhexamid** (**HydR3**) ne cesse de progresser chaque année avec un pourcentage de parcelles concernées par la résistance atteignant 71% en 2013. Par contre, la fréquence de souches résistantes dans ces parcelles reste globalement stable chaque année, autour de 30%, dans les parcelles concernées.
- La résistance aux **carboxamides** (**CarR**) est détectée en 2013 sur l'ensemble du vignoble avec 32% des parcelles en moyenne (2 fois plus qu'en 2012). La fréquence des souches résistantes dans les populations concernées se situe autour de 10% dans la plupart des vignobles, fréquence qui reste à peu près stable.
- En ce qui concerne le suivi de la résistance aux familles des Phénylpyrroles (**PheR1**) et des pyridinamines (**PyrR**), aucune résistance spécifique n'a été observée en 2013.
- La résistance multiple (**MultiDrug Resistance** ou **MDR**) induit une résistance croisée positive entre tous les anti-Botrytis spécifiques. Elle est rencontrée dans tous les vignobles avec un nombre de parcelles concernées par ce type de résistance qui a augmenté entre 2012 et 2013 notamment pour le phénotype MDR1 avec un pourcentage de parcelles concernées passant de 45 à 76% en 2013. Le phénotype MDR2 semble progresser également (60% en 2012 et 67% en 2013 de parcelles concernées). Le phénotype MDR3 reste stable aux environs de 45%. La fréquence des souches résistantes dans les populations concernées reste relativement stable bien que celle du phénotype MDR2 semble progresser lentement chaque année, tout en restant légèrement inférieure à 20% en 2013.

6- Conclusion

Le plan de surveillance 2013 de la résistance de *Botrytis cinerea* aux fongicides montre que toutes les familles chimiques sont concernées par la résistance, à l'exception de deux, les phénylpyrroles (fludioxonil) et les pyridinamines (fluazinam), qui restent toujours à l'écart des phénomènes de résistance. La fréquence des parcelles résistantes reste globalement stable, à l'exception de 3 familles : les anilinopyrimidines (AniR1), les hydroxyanilides et les SDHI pour lesquelles les fréquences ont progressé en 2013, ainsi que les fréquences des parcelles concernées par les souches de type MDR1 et MDR2.

En ce qui concerne la fréquence des souches résistantes dans les parcelles concernées, elle est plutôt stable, à l'exception du phénotype AniR1 (résistance aux anilinopyrimidines) pour lequel la fréquence est en hausse constante depuis 2008.

La résistance multiple reste d'actualité (augmentation du nombre de parcelles concernées) mais, pour l'instant, les facteurs de résistance étant faibles à moyens, ils ne semblent pas induire, en pratique, de baisse significative d'efficacité de la protection au vignoble.

En 2013, la pression de la maladie a été forte dans la plupart des vignobles. Le caractère tardif et les conditions météorologiques de la campagne ont été favorables à la progression des foyers.

Ces données sur l'évolution de la résistance permettent de constater l'effet positif des mesures d'alternance et de limitation des applications, notamment par l'utilisation de mesures prophylactiques, telles que recommandées par les notes techniques communes. Ainsi la résistance de *Botrytis cinerea* vis-à-vis des fongicides peut être correctement gérée au vignoble (Note technique commune 2014).

7- Partenaires Scientifiques et Techniques

- INRA : Anne-Sophie Walker INRA-UMR 1290 BIOGER-CPP Bât 13, Avenue Lucien Brétignières , BP01 78850 Thiverval-Grignon France
- **Expert national vigne DGAL : Jacques Grosman** DRAAF-SRAL Rhône Alpes 165 rue Garibaldi BP 3202 69401 Lyon cedex 03 France.

Réseau des DRAAF-SRAL et des organisations professionnelles de la Surveillance Biologique du Territoire pour la participation aux prélèvements.

8- Bibliographie

- Leroux P., Besselat B, 1984. Pourriture grise : la résistance aux fongicides de *Botrytis cinerea-Phytoma* 359, 25-31)
- Leroux P., Walker A.S., 2009. La resistance aux fongicides de type MDR (multidrug resistance) chez les champignons phytopathogènes : mythe ou réalité ? $g^{\grave{e}me}$ Conférence internationale sur les Maladies de plantes de l'AFPP, Tours, 8 et 9 décembre 2009. Session Résistances.
- Groupe national résistance aux fongicides de la vigne (DGAL-SDQPV, INRA, IFV, APCA, CIVC), 2014 *Note nationale résistance du Botrytis de la vigne*.

9- Annexes

Résultats d'analyses par région - 2013

			Tests r	ésistance	B01	RYTIS	S cine	rea \	Vigne 2	2013			
Expéditeur :	ALSACE					Analyse	s réalisée	s par :	Laborato	re Anses	- Lyon		
									Unité RP	Р			
									31 avenu	e Tony Ga	arnier		
									69364 LY	ON Cede	x 07		
Types de souche	s:												
ImiR1 = Résista	ntes aux dicar	boximides (In	rodione)										

BenR1 = Résistantes aux benzimidazoles (thiophanate méthyl)

BenR2 = Résistantes aux benzimidazoles (thiophanate méthyl) et au diéthofencarbe

AniR1 = moyennement à hautement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil)

MDR1 = faiblement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil) et moyennement résistantes aux phénylpyrroles (fludioxonil)

MDR2 = faiblement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM

MDR3 (MDR1 et MDR2) = faiblement résistantes aux anilinopyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM Moyennement résistantes aux phénylpyrroles (fludioxonil)

PheR1 = hautement résistant aux phénylpyrroles (fludioxonil)

HydR3 = Résistantes aux hydroxyanilides (fenhexamid)

PyrR = Résistantes aux pyridinamines (fluazinam)

CarR = Résistantes aux SDHI (carboxamides, pyridinyles, éthyl-benzamides)

						Résu	ıltats : %	spores	résistar	ntes dan	s chaqu	e échan	tillon an	alysé	
Référence échantillon Anses	Référence échantillon expéditeur	date de réception	Date d'analyse	% germination / témoin	% spores ImiR1		% spores BenR2	% spores AniR1	% spores MDR1	% spores MDR2	% spores MDR3		% spores HydR3	% spores PyrR	% spores CarR
13-175	13-AL-67-01 (CA 67)	25/09/13	25/09/13	73	0	0	0	32	24	26	0	0	18	0	6
13-176	13-AL-67-02 (CA 67)	25/09/13	25/09/13	60	0	0	0	48	20	0	0	0	20	0	0
13-177	13-AL-67-03 (CA 67)	25/09/13	25/09/13	71	36	18	0	63	4	12	20	0	10	0	19
13-178	13-AL-67-04 (CA 67)	25/09/13	25/09/13	90	10	0	0	22	7	0	0	0	0	0	6
13-179	13-AL-67-05 (CA 67)	25/09/13	25/09/13	79	0	0	0	40	19	0	6	0	0	0	0
13-180	13-AL-67-06 (CA 67)	25/09/13	25/09/13	75	0	0	0	37	23	2	0	0	21	0	21
13-181	13-AL-67-07 (CA 67)	25/09/13	25/09/13	72	7	0	0	31	15	0	0	0	22	0	9
13-182	13-AL-67-08 (CA 67)	25/09/13	25/09/13	85	0	0	0	32	26	0	4	0	36	0	0
13-183	13-AL-67-09 (CA 67)	25/09/13	25/09/13	85	0	0	0	27	26	13	0	0	5	0	0
13-184	13-AL-67-10 (CA 67)	25/09/13	25/09/13	53	0	0	0	12	8	2	0	0	0	0	13

		Tests	résistance <i>E</i>	BOTRYT	S cinerea	Vigne 20	13			
Expéditeur :	AQUITAINE			Analyse	s réalisées par :	Laboratoire	Anses - Lyon			
				,		Unité RPP				
						31 avenue	Tony Gamier			
						69364 LYO	N Cedex 07			
Types de souch	es:									
lmiR1 = Résist	antes aux dicarboxim	ides (Iprodione)								
BenR1 = Rési	stantes aux benzimida	azoles (thiophanate mé	ethyl)							
BenR2 = Rés	stantes aux benzimid	azoles (thiophanate m	éthyl) et au diéthof	encarbe						
AniR1 = moyer	nnement à hautement r	ésistantes aux anilino	-pyrimidines (pyrir	néthanil, mé	panipyrim, cypro	dinil)				
MDR1 = faible	nent résistantes aux a	nilino-pyrimidines (py	riméthanil, mépani	oyrim, cyprod	dinil) et moyenne	ment résistan	tes aux phé i	nylpyrroles	(fludioxonil)	
MDR2 = faible	ment résistantes aux a	nilino-pyrimidines (p	yriméthanil, mépani	pyrim, cypro	dinil), hydroxya	nilides (fenhe	xamid) et IDI	И		
	et MDR2) = faiblement ésistantes aux phény l	résistantes aux aniline pyrroles (fludioxonil)	opyrimidines (pyrir	méthanil, mé	panipyrim, cypro	odinil), hydrox y	yanilides (fe	nhexamid) e	et IDM	
PheR1 = haut	ement résistant aux ph	énylpyrroles (fludioxo	nil)							
HydR3 = Résis	tantes aux hydroxyan	ilides (fenhexamid)								
PyrR = Résist	antes aux pyridinamin	es (fluazinam)								
CarR = Résista	antes aux SDHI (carbo	xamides, pyridinyles, é	thyl-benzamides)							

						Ré	sultats :	% spores	s résistai	ntes dan	s chaque	échanti	llon analy	/sé	
Référence échantillon Anses	Référence échantillon expéditeur	date de réception	Date d'analyse	% germination / témoin	% spores ImiR1	% spores BenR1	% spores BenR2	% spores AniR1	% spores MDR1	% spores MDR2	% spores MDR3	% spores PheR1	% spores HydR3	% spores PyrR	% spores CarR
13-173	BotV13-AQ-24-06 FREDON 33	24/09/13	24/09/13	78	0	0	0	29	10	21	1	0	0	0	0
13-187	BotV13-AQ-33-05 (GEPE2M)	26/09/13	30/09/13	20	échantilo	n inexplo	itable								
13-200	BotV13-AQ-33-08 (CA 33)	27/09/13	30/09/13	69	0	19	0	29	9	36	12	0	35	0	0
13-201	BotV13-AQ-33-09 (CA 33)	30/09/13	30/09/13	85	16	15	0	17	14	17	8	0	31	0	0
13-228	BotV13-AQ-33-07 (CA 33)	07/10/13	09/10/13	72	35	17	0	17	15	8	6	0	8	0	0
13-229	BotV13-AQ-33-10 (CA 33)	07/10/13	09/10/13	77	0	0	0	33	0	12	33	0	10	0	0
13-230	BotV13-AQ-33-04 (Terres du Sud)	08/10/13	09/10/13	77	0	0	0	16	3	26	0	0	0	0	0
13-232	BotV13-AQ-33-11 (Ets Saléllas 33)	09/10/13	14/10/13	73	0	7	0	69	5	88	0	0	41	0	0
13-263	BotV13-AQ-33-01 (CIC)	15/10/13	16/10/13	63	0	46	5	45	3	49	0	0	0	0	30
13-264	BotV13-AQ-33-02 (CIC)	15/10/13	16/10/13	50	0	0	0	0	2	50	0	0	0	0	0
13-265	BotV13-AQ-33-03 (CIC)	15/10/13	16/10/13	68	0	0	0	40	1	28	0	0	0	0	0

Tests résistance BOTRYTIS cinerea Vigne 2013

Expéditeur CENTRE Analyses réalisées par : Laboratoire Anses - Lyon Unité RPP

31 avenue Tony Gamier 69364 LYON Cedex 07

Types de souches : ImiR1 = Résistantes aux dicarboximides (lprodione)

BenR1 = Résistantes aux benzimidazoles (thiophanate méthyl)

BenR2 = Résistantes aux benzimidazoles (thiophanate méthyl) et au diéthofencarbe

AniR1 = moyennement à hautement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil)

MDR1 = faiblement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil) et moyennement résistantes aux phénylpyrroles (fludioxonil)

MDR2 = faiblement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM

MDR3 (MDR1 et MDR2) = faiblement résistantes aux anilinopyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM Moyennement résistantes aux phénylpyrroles (fludioxonil)

PheR1 = hautement résistant aux phénylpyrroles (fludioxonil)

HydR3 = Résistantes aux hydroxyanilides (fenhexamid)

PyrR = Résistantes aux pyridinamines (fluazinam)

CarR = Résistantes aux SDHI (carboxamides, pyridinyles, éthyl-benzamides)

						Ré	sultats :	% spore	s résista	ntes dan	s chaque	échantil	lon analy	sé	
Référence échantillon Anses	Référence échantillon expéditeur	date de réception	Date d'analyse	% germination / témoin	% spores ImiR1	% spores BenR1	% spores BenR2	% spores AniR1	% spores MDR1	% spores MDR2	% spores MDR3	% spores PheR1	% spores HydR3	% spores PyrR	% spores CarR
13-245	13-CE-41-04 (CA 41)	10/10/13	15/10/13	80	0	0	0	0	0	0	0	0	0	0	0
13-246	13-CE-41-05 (CA 41)	10/10/13	15/10/13	84	7	11	0	35	16	0	2	0	25	0	0
13-247	13-CE-41-01 (CA 41)	11/10/13	15/10/13	55	44	0	0	40	31	7	0	0	58	0	0
13-248	13-CE-41-02 (CA 41)	11/10/13	15/10/13	53	6	51	0	10	19	19	0	0	9	0	0
13-249	13-CE-41-03 (CA 41)	11/10/13	15/10/13	50	0	28	0	30	23	0	5	0	34	0	0
13-276	13-CE-37-01 (CA 37)	17/10/13	23/10/13	84	0	14	0	18	3	16	0	0	29	0	7
13-277	13-CE-37-02 (CA 37)	17/10/13	23/10/13	79	0	25	0	2	5	32	0	0	41	0	6
13-278	13-CE-37-03 (CA 37)	17/10/13	23/10/13	75	0	0	0	0	13	13	0	0	39	0	0
13-279	13-CE-37-04 (CA 37)	17/10/13	13/11/13	99 (après culture)	0	0	0	0	0	0	0	0	0	0	0
13-280	13-CE-37-05 (CA 37)	17/10/13	23/11/13	82	22	15	0	31	9	1	9	0	72	0	4
	•														

Tests résistance BOTRYTIS cinerea Vigne 2013

Expéditeur : CHAMPAGNE-ARDENNE

Analyses réalisées par : Laboratoire Anses - Lyon
Unité RPP
31 avenue Tony Gamier
69364 LYON Cedex 07

Types de souches :
ImiR1 = Résistantes aux dicarboximides (Iprodione)
BenR1 = Résistantes aux denzimidazoles (thiophanate méthyl)
BenR2 = Résistantes aux benzimidazoles (thiophanate méthyl) et au diéthofencarbe
AniR1 = moyennement à hautement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil)
MDR1 = faiblement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil) et moyennement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM
MDR3 (MDR1 et MDR2) = faiblement résistantes aux anilinopyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM
MDR3 (MDR1 et MDR2) = faiblement résistantes aux anilinopyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM
Moyennement résistantes aux phénylpyrroles (fludioxonil)
PheR1 = hautement résistant aux phénylpyrroles (fludioxonil)

PyrR = Résistantes aux pyridinamines (fluazinam)

CarR = Résistantes aux SDHI (carboxamides, pyridinyles, éthyl-benzamides)

HydR3 = Résistantes aux hydroxyanilides (fenhexamid)

						F	Résultats	: % spore	s résista	ntes dans	chaque	échantille	on analys	é	
Référence échantillon Anses	Référence échantillon expéditeur	date de réception	Date d'analyse	% germination / témoin	% spores ImiR1	% spores BenR1	% spores BenR2	% spores AniR1	% spores MDR1	% spores MDR2	% spores MDR3	% spores PheR1	% spores HydR3	% spores PyrR	% spores CarR
13-204	13-CA-10-01 (CIVC 51)	02/10/13	02/10/13	50	0	20	0	24	8	6	34	0	22	0	0
13-205	13-CA-10-02 (CIVC 51)	02/10/13	02/10/13	50	20	0	22	25	8	32	16	0	56	0	0
13-206	13-CA-10-03 (CIVC 51)	02/10/13	02/10/13	78	19	4	0	3	4	25	17	0	0	0	0
13-207	13-CA-10-04 (CIVC 51)	02/10/13	02/10/13	51	0	10	0	11	1	16	5	0	43	0	0
13-208	13-CA-10-05 (CIVC 51)	02/10/13	02/10/13	42	échantilo	n inexploit	able								
13-209	13-CA-02-06 (CIVC 51)	02/10/13	02/10/13	79	0	0	0	0	20	0	4	0	23	0	0
19-210	13-CA-02-07 (CIVC 51)	02/10/13	02/10/13	81	0	35	0	26	4	0	33	0	23	0	0
13-211	13-CA-02-08 (CIVC 51)	02/10/13	02/10/13	55	22	18	0	36	17	27	3	0	0	0	0
13-212	13-CA-51-09 (CIVC 51)	02/10/13	02/10/13	60	0	25	0	41	25	20	13	0	17	0	0
13-213	13-CA-51-22 (CIVC 51)	02/10/13	02/10/13	62	15	0	0	0	2	7	2	0	16	0	0
13-214	13-CA-51-23 (CIVC 51)	02/10/13	07/10/13	56	0	0	0	21	6	7	5	0	30	0	9
13-220	13-CA-51-16 (CIVC 51)	04/10/13	20/11/13	95 (après culture)	17	0	0	20	0	0	0	0	0	0	11
13-221	13-CA-51-17 (CIVC 51)	04/10/13	13/11/13	90 (après culture)	0	0	0	0	0	0	0	0	0	0	0
13-222	13-CA-51-18 (CIVC 51)	04/10/13	07/10/13	99 (après culture)	0	0	0	0	0	0	0	0	0	0	0
13-223	13-CA-51-19 (CIVC 51)	04/10/13	07/10/13	61	28	16	0	0	17	55	0	0	20	0	0
13-224	13-CA-51-20 (CIVC 51)	04/10/13	07/10/13	65	35	26	0	76	43	18	24	0	23	0	7
13-225	13-CA-51-21 (CIVC 51)	04/10/13	13/11/13	95 (après culture)	0	98	0	8	72	13	2	0	0	0	0
13-226	13-CA-51-24 (CIVC 51)	04/10/13	09/10/13	55	0	0	0	0	0	0	0	0	15	0	0
13-227	13-CA-51-25 (CIVC 51)	04/10/13	09/10/13	51	15	46	0	12	26	13	15	0	26	0	20
13-239	13-CA-51-10 (CIVC 51)	09/10/13	09/10/13	73	22	25	0	26	9	9	3	0	15	0	24
13-240	13-CA-51-11 (CIVC 51)	09/10/13	09/10/13	67	9	42	15	22	13	23	35	0	33	0	14
13-241	13-CA-51-12 (CIVC 51)	09/10/13	09/10/13	70	0	27	0	17	9	7	33	0	27	0	5
13-242	13-CA-51-13 (CIVC 51)	09/10/13	14/10/13	56	0	18	0	48	37	5	17	0	55	0	0
13-243	13-CA-51-14 (CIVC 51)	09/10/13	14/10/13	55	7	31	0	42	18	20	27	0	33	0	0
13-244	13-CA-51-15 (CIVC 51)	09/10/13	14/10/13	69	0	7	0	38	44	59	0	0	41	0	0
13-258	13-CH-18-01 (SICAVAC 18)	15/10/13	16/10/13	76	4	21	0	9	16	32	0	0	25	0	0
13-259	13-CH-18-02 (SICAVAC 18)	15/10/13	16/10/13	78	0	0	0	19	3	0	0	0	27	0	0
13-260	13-CH-18-03 (SICAVAC 18)	15/10/13	16/10/13	67	0	0	0	27	15	11	14	0	34	0	0
13-261	13-CH-18-04 (SICAVAC 18)	15/10/13	16/10/13	89	0	0	0	10	14	17	0	0	4	0	6
13-262	13-CH-18-05 (SICAVAC 18)	15/10/13	16/10/13	85	0	36	0	34	2	11	11	0	54	0	6
	· · · · · · · · · · · · · · · · · · ·														

		Tests	s résistan	ce B	OTRY	TIS cin	erea	Vigne	2013			
Expéditeur	MIDI-PYRENEES				Analyses	réalisées	s par :	Laboratoi	re Anses -	Lyon		
								Unité RP	>			
								31 avenue	Tony Gar	nier		
								69364 LY	ON Cedex	07		
Types de soud	hes:											

ImiR1 = Résistantes aux dicarboximides (Iprodione)

BenR1 = Résistantes aux benzimidazoles (thiophanate méthyl)

BenR2 = Résistantes aux benzimidazoles (thiophanate méthyl) et au diéthofencarbe

AniR1 = moyennement à hautement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil)

MDR1 = faiblement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil) et moyennement résistantes aux phénylpyrroles (fludioxonil)

MDR2 = faiblement résistantes aux anilino-pyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM

MDR3 (MDR1 et MDR2) = faiblement résistantes aux anilinopyrimidines (pyriméthanil, mépanipyrim, cyprodinil), hydroxyanilides (fenhexamid) et IDM Moyennement résistantes aux phénylpyrroles (fludioxonil)

PheR1 = hautement résistant aux phénylpyrroles (fludioxonil)

HydR3 = Résistantes aux hydroxyanilides (fenhexamid)

PyrR = Résistantes aux pyridinamines (fluazinam)

CarR = Résistantes aux SDHI (carboxamides, pyridinyles, éthyl-benzamides)

						Ré	sultats :	% spore	s résista	ntes dan	s chaque	échanti	llon anal	ysé	
Référence échantillon Anses	Référence échantillon expéditeur	date de réceptio n	Date d'analyse	% germination / témoin	% spores ImiR1	% spores BenR1	% spores BenR2	% spores AniR1	% spores MDR1	% spores MDR2	% spores MDR3	% spores PheR1	% spores HydR3	% spores PyrR	% spores CarR
13-170	13-MP-82-01 (CA 31)	18/09/13	24/09/13	90	14	14	9	39	24	32	0	0	0	0	4
13-171	13-MP-31-01 (CA 31)	18/09/13	24/09/13	74	0	14	0	20	3	12	0	0	9	0	0
13-185	13-MP-31-02 (CA 31)	25/09/13	25/09/13	63	10	21	0	61	3	8	6	0	6	0	0
13-299	MP-82-01 (AOP 82)	31/10/13	13/11/13	55	13	36	0	52	30	33	14	0	22	0	17
13-300	MP-82-02 (AOP 82)	31/10/13	13/11/13	56	0	18	0	59	17	11	0	0	9	0	8

	Tests r	ésistance <i>L</i>	BOTRYT	IS cine	rea Viç	ne 20	13						
Expéditeur :	Pays de la Loire	Analyses réali	sées par :	Laboratoire	Anses - Ly	on .							
				Unité RPP									
				31 avenue	Tony Gamie	er							
				69364 LYC	N Cedex 0	7							
													_
Types de souc	hes:												
ImiR1 = Résis	stantes aux dicarboximid	es (Iprodione)											
BenR1 = Rés	istantes aux benzimidaz	oles (thiophanate	méthyl)										
BenR2 = Rés	sistantes aux benzimidaz	zoles (thiophanate	méthyl) et a	au diéthofe	ncarbe								
AniR1 = moye	ennement à hautement ré	sistantes aux anil i	no-pyrimidi	ines (pyrim	éthanil, me	épanipyrin	, cyprodin	il)					
MDR1 = faible	ement résistantes aux ani	lino-pyrimidines	(pyriméthani	il, mépanipy	rim, cypro	dinil) et m	oyenneme	ent résista	ntes aux	hénylpyr	roles (fludi	oxonil)	
MDR2 = faibl	ement résistantes aux an	ilino-pyrimidines	(pyriméthan	nil, mépanip	yrim, cypr	odinil), hy	droxyanili	des (fenh	examid) e	IDM			
MDR3 (MDR1	et MDR2) = faiblement r	ésistantes aux ani	linopyrimid	ines (pyrim	éthanil, m	épanipyrin	n, cyprodir	il), hydro	xyanilides	(fenhexa	mid) et IDN	1	
Moyennement	résistantes aux phénylp	yrroles (fludioxor	nil)										
PheR1 = hau	tement résistant aux phé	nylpyrroles (fludio	oxonil)										
HydR3 = Rés	istantes aux hydroxyanili	ides (fenhexamid)											
PyrR = Résis	tantes aux pyridinamine	s (fluazinam)											
CarR = Résis	tantes aux SDHI (carboxa	amides, pyridinyles	s. éthyl-benz	amides)									

		1													
							Résultat	s : % spor	es résista	intes dans	chaque e	échantillo	n analysé		
Référence échantillon Anses	Référence échantillon expéditeur	date de réception	Date d'analyse	% germination / témoin	% spores ImiR1	% spores BenR1	% spores BenR2	% spores AniR1	% spores MDR1	% spores MDR2	% spores MDR3	% spores PheR1	% spores HydR3	% spores PyrR	% spores CarR
13-233	13-PL-44-01 (CA 44)	09/10/13	09/10/13	57	33	84	0	18	0	0	0	0	25	0	0
13-234	13-PL-44-02 (CA 44)	09/10/13	09/10/13	83	37	41	42	21	6	4	0	0	28	0	0
13-235	13-PL-44-03 (CA 44)	09/10/13	14/10/13	80	0	0	0	28	0	0	0	0	68	0	0
13-236	13-PL-44-04 (CA 44)	09/10/13	14/10/13	67	0	0	0	37	4	4	0	0	43	0	0
13-237	13-PL-44-05 (CA 44)	09/10/13	14/10/13	83	6	0	0	33	0	0	0	0	88	0	0
13-238	13-PL-44-06 (CA 44)	09/10/13	14/10/13	69	17	20	0	10	0	0	0	0	35	0	0
·															

		Tests résistan	ce BOTR	YTIS cinere	a Vigne 2	2013			
Evnáditour	POITOU CHA DENTE C		Analyses	réalisées par :	l ab andain				
Expediteur.	POITOU-CHARENTES		Allalyses	realisees par .		e Anses - Lyon			
	Catherine Charles				Unité RPP				
						Tony Garnier			
					69364 LYC	69364 LYON Cedex 07			
Types de souc	hes:								
ImiR1 = Résis	stantes aux dicarboximides (Iprodi	one)							
BenR1 = Rés	istantes aux benzimidazoles (thio	phanate méthyl)							
BenR2 = Rés	sistantes aux benzimidazoles (thio	phanate méthyl) et au diétho	fencarbe						
AniR1 = moye	ennement à hautement résistantes	aux anilino-pyrimidines (pyri	méthanil, mépa	nipyrim, cyprodir	nil)				
MDR1 = faible	ement résistantes aux anilino-pyrir	nidines (pyriméthanil, mépan	ipyrim, cyprodir	nil) et moyenneme	ent résistantes	aux phénylpyrro	les (fludioxo	nil)	
MDR2 = faibl	ement résistantes aux anilino-pyri	midines (pyriméthanil, mépar	nipyrim, cyprodi	nil), hydroxyanili	ides (fenhexam	nid) et IDM			
MDR3 (MDR1	et MDR2) = faiblement résistantes	aux anilinopyrimidines (pyr	iméthanil, mépa	anipyrim, cyprodir	nil), hydroxyan	ilides (fenhexam	id) et IDM		
Moyennement	résistantes aux phénylpyrroles (fludioxonil)							
PheR1 = hau	tement résistant aux phénylpyrrol	es (fludioxonil)							
HydR3 = Rés	istantes aux hydroxyanilides (fenh	examid)							
PyrR = Résis	tantes aux pyridinamines (fluazina	am)							
CarR = Résis	tantes aux SDHI (carboxamides, p	vridinyles, éthyl-benzamides)							

					Résultats : % spores résistantes dans chaque échantillon analysé										
Référence échantillon Anses	Référence échantillon expéditeur	date de réception	Date d'analyse	% germination / témoin	% spores ImiR1	% spores BenR1	% spores BenR2	% spores AniR1	% spores MDR1	% spores MDR2	% spores MDR3	% spores PheR1	% spores HydR3	% spores PyrR	% spores CarR
13-216	PC132BOTn°1 (FREDON 86)	03/10/13	07/10/13	52	29	0	0	37	0	0	0	0	29	0	0
13-217	PC132BOTn°2 (FREDON 86)	03/10/13	07/10/13	52	8	10	0	5	0	0	0	0	0	0	0
13-218	PC132BOTn°3 (FREDON 86)	03/10/13	07/10/13	69	0	0	0	10	0	0	0	0	32	0	0
13-266	13-PC-16-03 (FREDON 86)	14/10/13	13/11/13	91 (après culture)	0	0	0	0	0	0	0	0	0	0	0
13-267	13-PC-16-15 (FREDON 86)	17/10/13	23/10/13	23	échantillo	n inexploita	able								
13-268	13-PC-16-16 (FREDON 86)	17/10/13	13/11/13	98 (après culture)	0	4	0	18	6	6	0	0	0	0	6
13-269	13-PC-16-17 (FREDON 86)	17/10/13	13/11/13	96 (après culture)	0	0	0	0	0	0	0	0	0	0	6
13-270	13-PC-16-18 (FREDON 86)	17/10/13	23/10/13	66 (après culture)	0	0	0	0	0	0	0	0	0	0	0
13-271	13-PC-16-19 (FREDON 86)	17/10/13	13/11/13	96 (après culture)	0	0	0	0	0	0	0	0	0	0	0
13-272	13-PC-16-20 (FREDON 86)	17/10/13	23/10/13	50	0	0	0	2	1	12	0	0	0	0	0
13-273	13-PC-16-22 (FREDON 86)	17/10/13	20/11/13	96 (après culture)	0	0	0	0	0	0	0	0	0	0	0
13-274	13-PC-16-23 (FREDON 86)	17/10/13	20/11/13	96 (après culture)	0	0	0	0	0	0	0	0	0	0	0

			ıests	résistance E	BUIRYI	is cin	erea \	/igne 2	2013				
Expéditeur :	RHONE-ALPES				Analyse	s réalisée	s par :	Laborato	oire Anses -	Lyon			
								Unité RPP					
								31 avenu	ue Tony Gar	nier			
								69364 L	YON Cedex	07			
Types de sou	iches :												
ImiR1 = Résis	tantes aux dicarboxi	imides (Iprodione)										
BenR1 = Rés	istantes aux benzimi	idazoles (thiopha	nate mét	hyl)									
BenR2 = Rés	sistantes aux benzim	nidazoles (thiopha	anate mé	thyl) et au diéthofe	ncarbe								
AniR1 = moye	nnement à hautemer	nt résistantes aux	anilino-	pyrimidines (pyrime	éthanil, mép	anipyrim,	cyprodinil)					
MDR1 = faible	ment résistantes aux	anilino-pyrimidi	nes (pyr	iméthanil, mépanipy	rim, cyprodi	nil) et mo	yennemer	nt résistar	ntes aux p l	hénylpyr	roles (flud	lioxonil)	
MDR2 = faibl	ement résistantes au	x anilino-pyrimid	ines (py	riméthanil, mépanipy	rim, cyprod	inil), hydr	oxyanilid	es (fenhe	examid) et	IDM			
MDR3 (MDR1	et MDR2) = faibleme	ent résistantes au	x anilino	pyrimidines (pyrim	éthanil, mép	anipyrim,	cyprodini	l), hydrox	yanilides	(fenhexa	mid) et IDI	M	
Moyennement	résistantes aux phéi	nylpyrroles (flud	ioxonil)										
PheR1 = hau	tement résistant aux	phénylpyrroles	fludioxor	il)									
HydR3 = Rés	stantes aux hydroxy	anilides (fenhexa	ımid)										
PyrR = Résis	tantes aux pyridinan	nines (fluazinam)											
CarR = Résis	tantes aux SDHI (car	boxamides, pyrid	nyles, ét	nyl-benzamides)									

					Résultats : % spores résistantes dans chaque échantillon analysé										
Référence échantillon Anses	Référence échantillon expéditeur	date de réception	Date d'analyse	% germination / témoin	% spores ImiR1	% spores BenR1	% spores BenR2	% spores AniR1	% spores MDR1	% spores MDR2	% spores MDR3	% spores PheR1	% spores HydR3	% spores PyrR	% spores CarR
13-189	13-RA-69-BOT-1 (CA 69)	27/09/13	30/09/13	60	0	18	0	0	18	48	0	0	32	0	0
13-190	13-RA-69-BOT-2 (CA 69)	27/09/13	30/09/13	72	6	4	0	4	5	17	0	0	40	0	9
13-191	13-RA-69-BOT-3 (CA 69)	27/09/13	30/09/13	60	0	27	0	15	0	13	5	0	55	0	8
13-192	13-RA-69-BOT-4 (CA 69)	27/09/13	30/09/13	75	0	11	0	4	0	21	3	0	19	0	33
13-193	13-RA-69-BOT-5 (CA 69)	27/09/13	30/09/13	64	17	0	0	24	9	0	6	0	31	0	0
13-252	13-RA-69-BOT-06 (CA 69)	11/10/13	15/10/13	81	30	0	0	23	4	7	15	0	69	0	0
13-253	13-RA-69-BOT-07 (CA 69)	11/10/13	15/10/13	83	0	39	0	22	2	11	17	0	41	0	4
13-254	13-RA-69-BOT-08 (CA 69)	11/10/13	15/10/13	56	0	0	0	12	18	18	0	0	45	0	7
13-255	13-RA-69-BOT-09 (CA 69)	11/10/13	15/10/13	70	13	43	0	36	15	29	10	0	14	0	0
13-256	13-RA-69-BOT-11 (CA 69)	11/10/13	15/10/13	70	14	11	0	34	16	15	0	0	26	0	0